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Self organized criticality refers to the tendency of highly dissipative systems to drive themselves to a critical state.

This may explain why observed physics often displays a wide disparity of length and time scales. The phenomenon

is observed in several simple cellular automaton models.

“Self organized criticality” describes the ten-
dency of strongly dissipative systems to show
relaxation behavior involving a wide range of
length and time scales.[1] The phenomenon is ex-
pected to be quite universal; indeed, it has been
looked for in such diverse areas as earthquake
structure[2] and economics.[3] The idea provides
an unifying concept for large scale behavior in
systems with many degrees of freedom. It com-
plements the concept of “chaos,” wherein simple
systems with a small number of degrees of free-
dom can display quite complex behavior.

I begin the discussion with the simple obser-
vation that real dissipative systems, unlike the
ideals discussed in freshman physics class, rarely
tend to go to their ground state. Consider, for
example, a pendulum. The ideal motion is pe-
riodic and for small amplitudes is well approxi-
mated by a sine wave. To make the system more
realistic, one can put in a drag term, giving rise
to a damped oscillatory behavior, with motion
theoretically continuing forever with a decreas-
ing amplitude. However, in the real world the
fulcrum for the pendulum will have some imper-
fections, perhaps in the form of grit. Thus once
the amplitude gets small enough, the pendulum
will suddenly stop, and this will generally occur
at the end of a swing where the velocity is small-

est. This is not the state of lowest energy, and
indeed the probability is a minimum for stop-
ping at exactly the bottom of the potential. In
a sense the system is most likely to stop in a
“minimally stable” state.

Generalizing to a multi-dimensional system of
many coupled pendula, a new issue arises. A min-
imally stable state will be particularly sensitive
to small perturbations which can “avalanche”
through the system. This idea leads me to the
prototypical example of self organized critical-
ity, a sandpile. Adding sand slowly to an existing
heap will result in the slopes increasing to a criti-
cal value, where an additional grain will give rise
to an unpredictable behavior. If the slope were
too steep, one would obtain a large avalanche and
a collapse to a flatter and more stable configura-
tion. On the other hand, if it were less steep the
new sand will iust accumulate to make thc pile
steeper. At the critical slope the distribution of
avalanches has no overall scale, but rather shows
a power law behavior. This has been extensively
discussed by several authors. [4] [5] [6] (7] [8]

Self organized criticality is expected to be a
quite universal phenomenon, applying whenever
substantial dissipation is present. In a general
sense, it explains why fractal structures, from
1/f noise to mountain ranges, are ubiquitous in
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our world. Self similar structures are also fre-
quently associated with the idea of chaos. As
usually discussed in non-linear science, chaos
represents the extremely complex behavior often
seen in the evolution of non-linear systems with
only a few degrees of freedom. In contrast, self or-
ganized criticality emphasizes coherent features
of the evolution of systems with many degrees of
freedom.

Ref. [1] presented a simple mathematical sys-
tem to demonstrate this behavior. This is a cellu-
lar automaton model formulated on a regular lat-
tice, and uses an integer variable z; on each site ¢
to represent the local sandpile slope. For this dis-
cussion, consider a two dimensional lattice with
open boundaries. When the slope exceeds a crit-
ical value, here taken to be 3, an avalanche en-
sues. In one time step, each site with slope z;
exceeding 3 has z; drop by 4, with the “sand”
spilling onto neighboring sites, increasing their
local slopes by one. The updating is done con-
currently, with all sites updated simultaneously.
Studies of this model gave evidence of a self or-
ganized critical state where the ultimate distri-
bution of avalanches was indeed a power law. In
addition, interesting non-irivial geometric struc-
tures appear from the relaxation of uniform ini-
tial states. (9]

To explore self organized criticality in this
model, one can randomly add sand and have the
system relax. After an initial relaxation period,
the results of such an addition become unpre-
dictable, with one only being able to find the
outcome of an addition by actually simulating
the resulting avalanche.

In Fig. (1a) I show a typical state of the
sandpile after a large amount of sand has been
dropped pseudo-randomly. The lattice here is
178 by 190 and the boundaries are open. Note
the absence of any notable structure. It is easy
to understand some features, such as the fact

that no cells of height 0 are next to each other.
This follows from the fact that in tumbling a
site to height 0, a grain of sand is dumped onto
each neighbor. In Fig. (1b) I show an interme-
diate stage of an avalanche obtained by adding
sand to make one site of the previous figure un-
stable. To trace the progress of the avalanche,
I color sites which have tumbled a muddy red.
Sites which are still active are shades of yellow.
Fig. (1c) shows the system after the avalanche
has completed.

This particular model was recently shown to
have some rather remarkable mathematical prop-
erties.[10] [11] In particular, the critical states of
the system are fully characterized in terms of an
Abelian group. If two grains of sand are added
to the system in arbitrary locations, the resulting
final state is independent of the orders of addi-
tion and the intermediate relaxation steps. This
result enables an exact calculation of the number
of states important in the self organized critical
state and determination of the average number
of tumblings occurring at a site ¢ given a grain
of sand has been added at site j. In this picture
the group elements are in one to one correspon-
dence with the critical states. In particular there
is a unique identity state which has the property
that it will relax back to itself if all sand heights
are doubled. The construction of this state was
the subject of my talk at last year’s lattice con-
ference.[12]

One rather surpising exact result is that in the
critical state all avalanches in the sandpile model
are simply connected. That is, regardless of how
or where a set of sand grains are dumped on the
system to start an avalanche, the resulting dis-
turbed region contains no closed paths that can-
not be shrunk to a point. Note that the avalanche
region in Fig. (1c) satisfies this property. This is
not true for avalanches begun on an arbitrary
state, only for those in the critical set, which
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Fig. (1a) A critical state of the sandpile model on a 178
by 190 lattice with open boundaries. Sand heights of 0-3 Fig. (1c) The final avalanche region. Note that it is simply
are denoted by black, red, blue, and green, respectively. connected.

Fig. (1b) An avalanche was started by increasing a sin-
gle site in Fig. (1a) to height 4. Here the avalanche is
in progress, and previously tumbled cells are colored a
muddy red. The still active sites are various shades of
yellow.

has been precisely defined in the above men-
tioned papers. This connectivity property is a
consequence of a simple algorithm presented by
Dhar[10] for detcrmining if a state is in the crit-
ical set. While these exact results have not yet
enabled determination of all critical properties of

Fig. (2) A state in the evolution of the forest fire model
mentioned in the text. On a black background, trees are
green and fires yellow.
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Fig. (3) The distribution of avalanche lengths for life on
512 by 512 (solid line) and 1024 by 1024 (dashed line)
periodic lattices.

interest, they suggest further exact results may
be found for this special model.

The sandpile model has a conservation law.
The total amount of sand is unchanged in a top-
pling at any site in the lattice interior. Sand is
only lost at the system edges. One might wonder
whether this is essential. Recent tests on non-
conservative variations of the model where the
variables are continuous also found critical be-
havior.[13] However, the exponents appear not
to be universal.

Fig. (2) illustrates another simple model used
to demonstrate self organized criticality. This fig-
ure shows an active state in a toy model for wild
fires in a slowly growing forest. Here each cell
can be either dead (black), a tree (green) or a
fire (yellow). At each time step new trees are
born on neighboring cells with a small proba-
bility, taken as 1/32 per time siep for inis fig-
ure. This probability sets a scale, and should be
taken to zero as the size of the system goes to
infinity. Finally, any existing fire goes out leaving

an empty cell, while spreading to all neighboring
trees. When run, this model displays fire fronts
separated by periods of tree regrowth. If the tree
density gets too large, there is a catastrophic fire,
while if it is too low, the fire tends to go out. The
steady state has phenomena occurring at a wide
range of length scales. As in the real world, if
one artificially puts out fires, then trees grow to
a high density state which is particularly prone
to a huge catastrophic fire.

If self organized criticality is indeed ubiqui-
tous, then it should appear in the simplest cellu-
lar automaton models. Thus motivated, we stud-
ied the famous “game of life” automaton.[14]
Here simulations also suggested power law distri-
butions for avalanche times and volumes.[7] This
paper has been somewhat controversial, with
other work indicating a possible cutoff at rather
large avalanche size.[15] In Fig. (3) I show the
distribution of avalanche lengths from a sequence
of 25,000 avalanches on a 512 by 512 lattice and
6000 avalanches on a 1024 by 1024 lattice. In
each case the initial lattice was obtained by re-
laxing a random configuration and then discard-
ing 1000 avalanches. An avalanche is started by
placing a random new live cell. Cases where the
new cell dies immediately with no other changes
of the lattice are not counted as an avalanche.
The avalanche is considered terminated if the lat-
tice is either identical to one two time steps back,
or for two successive steps has the same total
number of live cells as it had 12 steps previously.
These conditions are meant to eliminate isolated
oscillators. While oscillators of arbitrarily long
period can exist, they appear to be rare and did
not occur in these simulations. Note that the dis-
tribution is approximately a power law for over 4
orders of magnitude. The drop off for avalanches
of iength about 10* may be a finite size effect
or, if ref. [15] is correct, may be a fundamental
cutoff. Fig. (3) hints that the 1024 by 1024 site
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lattice scales somewhat further than the 512 by
512 system, thus supporting the point of view in
Ref. [7].

In short, self-organized criticality represents
a general concept, complementary to chaos, at-
tempting to describe how real systems may au-
tomatically exhibit complex phenomena over a
wide range of scales. Indeed, from galaxy clus-
tering at the largest scales to new particles at
the smallest, physics never seems to get boring.
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